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Abstract In multi-instance learning, the training set comprises labeled bags that are composed of unlabeled instances,
and the task is to predict the labels of unseen bags. This paper studies multi-instance learning from the view of supervised
learning. First, by analyzing some representative learning algorithms, this paper shows that multi-instance learners can be
derived from supervised learners by shifting their focuses from the discrimination on the instances to the discrimination
on the bags. Second, considering that ensemble learning paradigms can effectively enhance supervised learners, this paper
proposes to build multi-instance ensembles to solve multi-instance problems. Experiments on a real-world benchmark test

show that ensemble learning paradigms can significantly enhance multi-instance learners.
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1 Introduction

During the past years, learning from examples has be-
come one of the most flourishing areas in machine learn-
ing. According to the ambiguity of the labels of training
examples, previous research in this area can be roughly
categorized into three learning frameworks, i.e., super-
vised learning, unsupervised learning, and reinforcement
learning!!). Supervised learning attempts to learn a con-
cept for correctly labeling unseen instances, where the
training instances are with known labels and therefore
the ambiguity is minimum; unsupervised learning at-
tempts to learn the structure of the underlying sources
of instances, where the training instances are without
known labels and therefore the ambiguity is the maxi-
mum; reinforcement learning attempts to learn a map-
ping from states to actions, where the instances are with
no labels but with delayed rewards which can be viewed
as delayed labels and therefore the ambiguity is between
that of supervised learning and unsupervised learning.

The term multi-instance learning was coined by Diet-
terich et al.[2 when they were investigating the problem
of drug activity prediction. In multi-instance learning,
the training set is composed of many bags each contains
many instances. A bag is positively labeled if it contains
at least one positive instance and negative otherwise.
The task is to learn some concept from the training set
for correctly labeling unseen bags.

In contrast to supervised learning where all training
instances are with known labels, in multi-instance learn-
ing the labels of the training instances are unknown;
in contrast to unsupervised learning where all training
instances are without known labels, in multi-instance
learning the labels of the training bags are known; and
in contrast to reinforcement learning where the labels
of the training instances are delayed, in multi-instance
learning there is no any delay. It has been shown that
learning algorithms ignoring the characteristics of multi-
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instance problems, such as popular decision trees and
neural networks, cannot work well in this scenariol?.

Since multi-instance problems extensively exist but
are unique to these addressed by previous learning
frameworks, multi-instance learning was regarded as a
new learning framework!", and has attracted much at-
tention of the machine learning community.

The contribution of this paper lies in two aspects.
First, illustrated by the analyses on some representative
multi-instance learning algorithms, this paper shows
that supervised learning algorithms can be adapted
to multi-instance learning as long as their focuses are
shifted from the discrimination on the instances to the
discrimination on the bags. This insight provides a gen-
eral solution to the open problem raised by Dietterich
et all?l that is, how to design multi-instance modifica-
tions for popular machine learning algorithms. Second,
considering that ensemble learning paradigms can effec-
tively improve the generalization ability in supervised
learning!®! and the first contribution of this paper has re-
vealed that multi-instance learning has close connection
with supervised learning, this paper proposes to build
multi-instance ensembles to solve multi-instance prob-
lems. Experiments on a real-world benchmark data set
show that current multi-instance learners can be signif-
icantly enhanced by ensemble learning paradigms.

The rest of this paper is organized as follows. Sec-
tion 2 briefly reviews the advances in the area of multi-
instance learning. Section 3 shows that multi-instance
learners can be derived by shifting the focuses of su-
pervised learners. Section 4 proposes to build multi-
instance ensembles and reports on the experimental re-
sults. Finally, Section 5 concludes and raises several
issues for future work.

2 Multi-Instance Learning

In the middle of 1990s, Dietterich et al.?! investigated
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the problem of drug activity prediction. The goal was
to endow learning systems with the ability of predict-
ing that whether a new molecule was qualified to make
some drug or not, by analyzing a collection of known
molecules.

Most drugs are small molecules working by binding
to larger protein molecules such as enzymes and cell-
surface receptors. For a molecule qualified to make a
drug, at least one of its low-energy shapes can tightly
bind to the target area; while for a molecule unquali-
fied to make a drug, none of its low-energy shapes can
tightly bind to the target area. The main difficulty of
drug activity prediction lies in that each molecule could
have many alternative low-energy shapes, but currently
biochemists only know that whether a molecule is qual-
ified to make a drug or not, instead of knowing that
which of its alternative low-energy shapes responses for
the qualification.

An intuitive solution is to exploit traditional super-
vised learning algorithms by regarding all the low-energy
shapes of the “good” molecules as positive training in-
stances, while regarding all the low-energy shapes of the
“bad” molecules as negative training instances. How-
ever, as shown by Dietterich et al.[2!, such a method can
hardly work due to the high false positive noise, which
is caused by the fact that a “good” molecule may have
hundreds of low-energy shapes but maybe only one of
them is really a “good” shape.

In order to solve this problem, Dietterich et al.l?! re-
garded each molecule as a bag, and the alternative low-
energy shapes of the molecule as the instances in the
bag, thereby formulated multi-instance learning.

Formally, let X’ denote the instance space and ) the
set of class labels. The task of multi-instance learning is
to learn a function f : 2% — {—1,+1} from a given data
set {(X1,v1), (X2,¥2),... ,‘(Xm‘,ym)}, Where X; C X
is a set of instances {mgz),mgl), el a:(n?}, mgz) e X
(j = 1,...,n;), and y; € {—1,+1} is the known la-
bel of X;. In contrast, the task of traditional supervised
learning is to learn a function f : X — ) from a given
data set {(z1,y1), (£2,9Y2), .., (@m,Ym)}, where @; € X
is an instance and y; € ) is the known label of ;.

Then, Dietterich et al.?! proposed three AXIs-
PARALLEL RECTANGLE (abbreviated as APR) algo-
rithms, which attempt to search for appropriate axis-
parallel rectangles constructed by the conjunction of the
features, to tackle the problem. Among these algorithms
the ITERATED-DISCRIM APR algorithm has achieved the
best performance on the Musk data, a concrete test data
for the drug activity prediction task which becomes a
popular real-world benchmark test for multi-instance
learning algorithms since then.

Note that multi-instance problems do not emerge
suddenly from drug activity prediction. Actually, they
extensively exist in real-world applications*®!, but un-
fortunately the uniqueness of these problems has not
been particularly distinguished until Dietterich et al.’s
work![?!.
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Long and Tanl® initiated the investigation of the
PAc-learnability of APR under the multi-instance learn-
ing framework. They showed that if the instances in
the bags are independently drawn from product distri-
bution, then the APR is Pac-learnable. Auer et all”
showed that if the instances in the bags are not inde-
pendent then APR learning under the multi-instance
learning framework is NP-hard. Moreover, they pre-
sented a theoretical algorithm that does not require
product distribution but with smaller sample complex-
ity than that of Long and Tan’s algorithm, which was
transformed to a practical algorithm named MULTINST
later®!. Blum and Kalail®! described a reduction from
PAc-learning under the multi-instance learning frame-
work to PAC-learning with one-sided random classifica-
tion noise. They also presented a theoretical algorithm
with smaller sample complexity than that of Auer et
al.’s algorithm(™!.

It is noteworthy that almost all of these theoretical
analyses were made under strong assumptions, such as
the number of instances in the bags is a constant and
all the instances are independent. These assumptions
are unfortunately hard to be met in real-world prob-
lems. For example, in drug activity prediction it is not
the fact that different molecules have the same number
of alternative low-energy shapes, and it is not reason-
able to assume that the different alternative low-energy
shapes of a molecule are independent.

Maron and Lozano-Pérez!'% proposed a practical
multi-instance learning algorithm, DIVERSE DENSITY,
which has been applied to diverse tasks including nat-
ural scene classification!!!], stock selection'®!, subgoal
discovery['?, content-based image retrievall'®>'4 image
categorization!'®! etc. Through combining DIVERSE
DENsITY with EMU® Zhang and Goldman!'” pro-
posed the EM-DD algorithm, which has been applied to
content-based image retrievall'®l. Wang and Zucker[*?!
proposed the multi-instance k-nearest neighbor algo-
rithms CITATION-ANN and BAYESIAN-ENN.  Later,
Zhou et all?] developed FRETCIT-KNN, a variant of
CITATION-ENN, and applied it to web mining. Zhou
and Zhang?!l proposed the multi-instance neural net-
work BP-MIP, and by incorporating feature scaling
and feature reduction mechanisms into BP-MIP, they
developed BP-MIP-DD and BP-MIP-PCA[??/.  There
are also many other practical multi-instance learn-
ing algorithms, such as Ruffo’s multi-instance deci-
sion tree RELIC[3] Chevaleyre and Zucker’s multi-
instance decision tree ID3-MI and multi-instance rule
inducer RIPPER-MI?4, Gértner et al’s multi-instance
kernels/?®!, Andrews et al’s multi-instance support
vector machines?®!, Zhou and Zhang’s multi-instance
ensembles?”!, Xu and Frank’s multi-instance logistic re-
gression algorithm MILOGISTICREGRESSION and multi-
instance ensemble algorithm MIBoosTING?8!, Zhang
and Zhou’s multi-instance neural network RBF-MIP[29,
etc. Some of these algorithms will be analyzed in Sec-
tion 3.
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In the early years of the research of multi-instance
learning, most work was on multi-instance classification
with discrete-valued outputs. Later, multi-instance re-
gression with real-valued outputs caught the attention
of many researchers/30—33],

Recently, Weidmann et al.*¥ indicated that by em-
ploying different assumptions of how the instances’ clas-
sifications determine their bag’s label, different kinds
of multi-instance problems can be defined. Based on
this recognition, they defined three kinds of general-
ized multi-instance problems, i.e., presence-based MI,
threshold-based MI, and count-based MI, and proposed
the TLC algorithm to tackle these problems. Scott et
al.13%] defined another kind of generalized multi-instance
problem which is close to threshold-based MI, and pro-
posed the GMIL-1 algorithm to solve this problem,
which was then reformulated as a kernel algorithm![®¢!,
reducing the time complexity from exponential to poly-
nomial. Later, this kernel was further generalized along
the line of count-based MIP7].

It is worth noting that multi-instance learning has
also attracted the attention of the inductive logic pro-
gramming (abbreviated as ILP) community. It has
been suggested that multi-instance problems could be
regarded as a bias on ILP, and the multi-instance
paradigm could be the key between the propositional
and relational representations, being more expressive
than the former, and much easier to learn than the
latter[®®l. Recently, Alphonse and Matwinl®**! success-
fully employed multi-instance learning to help relational
learning. At first, the original relational learning prob-
lem is approximated by a multi-instance problem. Then,
the resulting data is passed to feature selection tech-
niques adapted from propositional representations. Fi-
nally, the filtered data is transformed back to relational
representation for a relational learner to learn. In this
way, the expressive power of relational representation
and the ease of feature selection on propositional repre-
sentation are gracefully combined. It is also worth not-
ing that although multi-instance learning was proposed
initially based on propositional representation, a recent
modification developed by McGovern and Jensen/*?! al-
lows multi-instance techniques to be used on relational
representation. These works confirm that multi-instance
learning can really act as a bridge between propositional
and relational learning.

3 Adapt Supervised Learners to Multi-Instance
Learning

When proposing the notion of multi-instance learn-
ing, Dietterich et all?! raised an open problem, i.e., how
to design multi-instance modifications for popular ma-
chine learning algorithms. This open problem greatly
pushes the development of this area. Actually, multi-
instance versions of many machine learning algorithms
have been proposed during the past years. However,
these algorithms were developed in a one by one man-
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ner, since there was no general rule indicating how to
do such a modification.

Generally speaking, the focus of a supervised learner
is to discriminate the instances, which is feasible since
the labels of all the training instances are known in su-
pervised scenario. But in multi-instance learning it is
very difficult, if not infeasible, to discriminate training
instances because the labels of the training instances are
unknown. If the label of a bag is simply used as the la-
bel of its instances, then the learning task will become
a difficult one although every training instance holds a
label now, because the false positive noise may be ex-
tremely high, as indicated by Dietterich et al.[?! There-
fore, whether it is possible to discriminate the training
instances or not is the principal difference between su-
pervised learning and multi-instance learning.

Illustrated by the analyses on some representative al-
gorithms including DIVERSE DENSITY, CITATION-KNN,
ID3-MI, RiprPER-MI, and BP-MIP, this section shows
that supervised learners can be adapted to multi-instance
learning as long as their focuses are shifted from the dis-
crimination on the instances to the discrimination on
the bags, which provides a general solution to Dietterich
et al.’s open problem.

3.1 DIVERSE DENSITY

The DIVERSE DENSITY algorithm% regards each
bag as a manifold, which is composed of many instances,
i.e., feature vectors. If a new bag is positive then it is be-
lieved to intersect all positive feature-manifolds without
intersecting any negative feature-manifolds. Intuitively,
diverse density at a point in the feature space is defined
to be a measure of how many different positive bags
have instances near that point, and how far the nega-
tive instances are from that point. Thus, the task of
multi-instance learning is transformed to the search for
a point in the feature space with the maximum diverse
density.

It is evident that the key of the DIVERSE DENSITY
algorithm lies in the formal definition of the mazimum
diverse density, which is the objective to be optimized
by the algorithm. Below we show that such a definition
can be attained by modifying standard Bayesian clas-
sifier according to the rule, i.e., shifting the focus from
discriminating the instances to discriminating the bags.

Given data set D and a set of class labels C' =
{c1,c2,...,c} to be predicted, the posterior probability
of the class can be estimated according to the Bayes rule
as shown in (1).

Pr(D|C) Pr(C)

PH(CID) = =3

(1)

What we want is the class label with the maximum
posterior probability, as indicated in (2), where Obj de-
notes the objective.

Obj = arg max Pr(ci|D)
1<kt
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Pr(D|ex) Pr(ci)
PrIED) = 2)

= arg max
1<k<E

Considering that Pr(D) is a constant which can be
dropped, and Pr(cg) can also be dropped if we assume
uniform prior, (2) can be simplified to (3).

Obj = arg max Pr(D|cg). (3)
1<kt

(3) is fine when the goal is to discriminate the in-
stances, but for discriminating the bags it is helpful to
consider D = {Bj",..., B}, By ,...,B;} where B} de-
notes the i-th positive bag while B;" denotes the j-th
negative bag. Then, assuming that the bags are condi-
tionally independent, (3) can be re-written into (4).

Obj = argmaxPr({B",..., B}, By ,..., B, }ck)
1<kt
= arg max H Pr(B;"|c) H Pr(B; ek).
ISESE 1 igm 1<i<n 4)

(5) can be obtained by applying Bayes rule to (4).

Pr(ci|B;") Pr(B;")
Pr(ck)

Obj = arg max
1<kt

I

1<5<n

Considering [];;c,, Pr(B;") [licj<n Pr(B;) is a
constant which can be dropped, and reminding that
Pr(ci) can be dropped as that has been done in (3) since
we assume uniform prior, (5) can be simplified into (6).

1<i<m
Pr(cx|B; ) Pr(B;)
Pr(ck) ' (5)

Obj = arg max H Pr(cx|B;") H Pr(c|B; ). (6)

ISESt 1&i<m 1<j<n

(6) is the general expression for the class label with
the maximum posterior probability. Concretely, the
class label for a specific point @ in the feature space
can be expressed as (7), where (& = ¢;) means the label
of x is ¢y,.

Obj™ = arg max H Pr(z = cx|B}")

ISESE 1 Cigm

- I Pr(z=ciB;). (7)

NV

If we want to identify a single point in the feature
space where the maximum posterior probability of a spe-
cific class label, say cy, is the biggest, then the point can
be located according to (8).

& = arg max Pr(0bj™ = cp,)
x

= arg max H Pr(x = c;|B}")

z 1<i<m

- I Pr(z=culB;). (8)

1<j<n
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It is noteworthy that (8) is exactly the formal defi-
nition of the general mazimum diverse density® opti-
mized by the DIVERSE DENSITY algorithm. This implies
that multi-instance learner can be obtained by shifting
the focus of the standard Bayesian classifier.

3.2 CITATION-ENN

CITATION-ENN'! is a nearest neighbor style algo-
rithm, which borrows the notion of citation and refer-
ence of scientific literatures in the way that a bag is
labeled by analyzing not only its neighboring bags but
also the bags that regard the concerned bag as a neigh-
bor.

It is evident that for any nearest neighbor style algo-
rithm, the key lies in the definition of the distance metric
which is utilized to measure the distance between differ-
ent objects. Below we show that the key of CITATION-
kNN, i.e., the definition of the minimal Hausdorff dis-
tance, can be attained by modifying standard k-nearest
neighbor algorithm according to the rule, i.e., shifting
the focus from discriminating the instances to discrimi-
nating the bags.

In standard k-nearest neighbor algorithm, each ob-
ject, or instance, is regarded as a feature vector in the
feature space. For two different feature vectors, i.e., a
and b, the distance between them can be written as (9).
Usually ||a — b|| is realized by the Euclidean distance.

Dist(a, b) = |a — b]]. (9)

(9) is fine to be instantiated when the goal is to dis-
criminate the instances, but for discriminating the bags
(9) must be extended because now we should measure
the distance between different bags.

Suppose there are two different bags, ie., A =
{a1,as,...,a,} and B = {by,bs,...,b,} where a;
(1 <i<m)andb; (1<j< n)are the instances. It is
obvious that they can be regarded as two feature vector
sets, where each a; (1 <i<m)orbd; (1<j<n)isa
feature vector in the feature space. Therefore, the prob-
lem of measuring the distance between different bags is
in fact the problem of measuring the distance between
different feature vector sets.

Geometrically, a feature vector set can be viewed as
a group of points enclosed in a contour in the feature
space. Thus, an intuitive way to measure the distance
between two feature vector sets is to define their distance
as the distance between their nearest feature vectors, as
illustrated in Fig.1.

Formally, such a distance metric can be written as

(10).

Dist(A, B) = llrirgl:(Dlst(ai, b;)) = min min la —b|.

(10)
It is noteworthy that (10) is exactly the formal defi-
nition of the minimum Hausdorff distance!®! employed
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by the CITATION-ENN algorithm to measure the distance
between different bags. This implies that multi-instance
learner can be obtained by shifting the focus of the stan-
dard k-nearest neighbor algorithm.

O

bag A

1O

Dist (A, B)

Fig.1. An Intuitive way to define the distance between bags.

Note that although Wang and Zucker admitted that
using the minimal Hausdorff distance does allow k-
nearest neighbor algorithm to be adapted to multi-
instance learning, they also indicated that it is not
sufficient®!. This is because the common prediction-
generating scheme employed by k-nearest neighbor al-
gorithms, i.e., majority voting, may be confused by false
positive instances in positive bags in some cases. There-
fore as mentioned before, the notion of citation and ref-
erence is introduced for obtaining the optimal perfor-
mance.

However, the utilization of the notion of citation
and reference does not change the fact that the mini-
mal Hausdorff distance is the key in adapting k-nearest
neighbor algorithms to multi-instance learning. This is
because the notion of citation and reference can also
be introduced to improve the performance of k-nearest
neighbor algorithms dealing with supervised learning
tasks. More importantly, a k-nearest neighbor algo-
rithm employing common distance metrics such as the
Euclidean distance cannot work in multi-instance sce-
narios, even though it were facilitated with the notion
of citation and reference; while a k-nearest neighbor al-
gorithm employing the minimal Hausdorff distance can
work in multi-instance scenarios, even though it does
not take citation and reference into account.

In fact, by analyzing the experimental data pre-
sented in the Appendix of Wang and Zucker’s paper[!?],
it could be found that when k is 3, the performance
of the k-nearest neighbor algorithm employing the min-
imal Hausdorff distance without utilizing citation and
reference is already comparable to or even better than
that of some multi-instance learning algorithms such
as ReLIC[??] and MuLTINSTI®! on Muskl, and RIPPER-
mi?4 and Grs eLiM-coUNT APRIZ on Musk2. More-
over, if the fact that the occurrence of positive bags is
much smaller than that of negative bags has been con-
sidered so that a new bag is negatively labeled when
tie occurs in determining its label, the performance of
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the k-nearest neighbor algorithm employing the minimal
Hausdorff distance without utilizing citation and refer-
ence would be 90.2% on Muskl and 82.4% on Musk2,
respectively, when k is 2. It is interesting that this
reaches the best performance of another multi-instance
k-nearest neighbor algorithm, i.e., BAYESIAN-kANN!!,

3.3 ID3-MI

ID3-MI[24 is a decision tree algorithm, which follows
the divide-and-conquer way of popular decision trees,
e., training data falling into a tree node will be split
into different subnodes unless almost all the data on the
concerning node belonging to the same class, if pruning
is not considered.

Roughly speaking, a decision tree algorithm has two
important components, i.e., the strategies of how to
choose tests to split the tree nodes and how to make
predictions using the tree. Since the ID3-MI algorithm
makes predictions in the same way as standard decision
tree does, i.e., the label of an unseen bag is determined
by the label of the leaf node into which the bag falls, it
is evident that the key of ID3-MI lies in the formal def-
inition of the multi-instance entropy, i.e., the criterion
used by ID3-MI to select candidate tests to split the tree
nodes. Below we show that such a definition can be at-
tained by modifying standard decision tree according to
the rule, i.e., shifting the focus from discriminating the
instances to discriminating the bags.

Given data set D containing p positive instances and
n negative instances, the entropy of D corresponding to
the classification is shown as (11).

Info(D) = — log, <p :_L n)

(11)

Assuming attribute V is chosen as the test, which
partitions D into {Dy, Ds, ..., D;}, then the entropy of
D after partitioning with V' is shown as (12), where | X|
denotes the size of the set X, i.e., the numbers of in-
stances contained in X

Info(D, V) Z

089 -
p+n p+n p+n

Dy). (12)

The information gain of V on D can be computed
according to (13).

Gain(D, V) =Info(D) — Info(D V)
| D:
= Info(D
Z |D|

(13) is fine for choosing appropriate tests for a deci-
sion tree when the goal is to discriminate the instances,
but for discriminating the bags it is necessary to count
the number of positive bags and negative bags instead
of that of positive instances and negative instances con-
tained in D and D;.

(13)
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Let w(X) and v(X) respectively denote the numbers
of positive and negative bags which have instances ap-
pearing in data set X'. Then the entropies of D defined
at the bag level before and after partitioning with V are
shown in (14) and (15), respectively.

(D) (D)
Infop (D) = ———————= 1o (7>
)= =)+ vD) % \5(D) + (D)
v(D) ( v(D) )
- _log, (—-t ),
(D) + (D) "2 \#(D) + v(D)

m(Di) + v(Di)
)+

i v Dz
Infoui(D, V) =) 7r(D—1/ED)
i=1

(14)

Infomult;(Di).
(15)

The information gain of V on D defined at the bag
level is computed according to (16).

Gainpu (D, V) = Infomum(D) - Infomum(D V)
(

m(D;) +

Di)
71'(D ) Infomultl(Dz)

(16)

= Infomultl
i=1

It is noteworthy that (16) is exactly the formal defi-
nition of the multi-instance entropy!®*! employed by the
ID3-MI algorithm to select candidate tests. This implies
that multi-instance learner can be obtained by shifting
the focus of the standard decision tree algorithm.

Note that there is another way to modify standard
decision tree. As mentioned before, besides the criterion
for choosing the tests, a decision tree algorithm has an-
other important component, i.e., the strategy of how to
make predictions using the tree. Through shifting the
focus of this strategy from discriminating the instances
to discriminating the bags, standard decision tree can
also be adapted to multi-instance learning, which is ex-
actly the way adopted by Ruffo’s RELIC algorithm!23.

3.4 RIPPER-MI

RippER-MI?Y is a rule induction algorithm, which
follows the separate-and-conquer way of popular rule
inducers, i.e., the rules are induced one by one and all
training data covered by a rule will be removed after the
rule is found.

In general, a rule is grown on a growing data set and
then pruned on a pruning data set, where the defini-
tion of coverage that expresses the numbers of instances
covered by the rule is very important no matter whether
the rule is being grown or pruned. In detail, when a rule
is being grown, rule conditions can be ceaselessly added
to the rule until the rule does not cover any negative
instances in the growing data set; while when a rule
is being pruned, rule conditions can be ceaselessly re-
moved from the rule to maximize some evaluation func-
tion, such as the one shown in (17), where p and n re-
spectively denote the numbers of positive and negative
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instances in the pruning data set covered by the rule.

p—n
p+n’

v = (17)

Since the only difference between RIPPER-MI and its
corresponding supervised learner, i.e., RIPPER, is on the
definition of coveragel?¥, it is evident that the key of
RIPPER-MI lies in the formal definition of the multi-
instance coverage, i.e., the function used by RIPPER-MI
to measure the coverage of a rule. Below we show that
such a definition can be attained by modifying standard
rule inducer according to the rule, i.e., shifting the focus
from discriminating the instances to discriminating the
bags.

Given data set D, the coverage of rule R can be
measured according to (18), where Cover(R, instance;)
means that the i-th instance in D is covered by R, that
is, R is more general than instance; if the latter is being
regarded as a rule.

Coverage(R) = |{instance;|Cover(R, instance;)}|. (18)

(18) is fine when the goal is to discriminate the in-
stances, but for discriminating the bags the coverage
function must be extended. For this purpose we should
define in which situation a bag can be regarded as be-
ing covered by rule R. If we adopt the definition shown

s (19), then the coverage function at the bag level is
shown as (20), where bag,; denotes the i-th bag in D.

Coverputi (R, bag)

= J(instance € bag)Cover(R, instance),  (19)
Coverage,a(R)
= |{bag;|Cover i (R, bag;) }. (20)

It is noteworthy that (20) is exactly the formal defi-
nition of the multi-instance coveragel?* employed by the
RIPPER-MI algorithm to measure the coverage of rules.
This implies that multi-instance learner can be obtained
by shifting the focus of the standard rule induction al-
gorithm.

3.5 BP-MIP

BP-MIP?! is a feedforward neural network algo-
rithm, which compares the actual output of the network
with the desired output, and then backpropagates the
error and updates the weights of the connections and
the thresholds of the units.

It is evident that the key of the BP-MIP algorithm
lies in the formal definition of the multi-instance error
function®, which is the function used to measure the
error of the neural network and therefore is the objec-
tive to be optimized by the algorithm. Below we show
that such a definition can be attained by modifying stan-
dard feedforward neural network algorithm according to

@ This error function was not named in Zhou and Zhang’s paper2l. Here we call it multi-instance error function for convenience.
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the rule, i.e., shifting the focus from discriminating the
instances to discriminating the bags.

Given data set D comprising [/ instances, the error
of the neural network is usually computed according to
(21), where o; and d; is the actual output and desired
output on the ¢-th instance, respectively.

(Oi — dl)z (21)

E:ZEi:i

=1 i=1

DN | =

(21) is fine when the goal is to discriminate the in-
stances, but for discriminating the bags the error func-
tion must be extended. For this purpose we must define
what is the actual output of a bag. If we adopt the
definition shown as (22), where o;; denotes the actual
output of the j-th instance of the i-th bag in D and m;
denotes the total number of instances in the i-th bag,
then the error function at the bag level can be defined
as (23). Note that instances belonging to the same bag
are input to the network successively.

0; = lér}g}r(ni 0ij, (22)
! ! 1 2

It is noteworthy that (23) is exactly the formal def-
inition of the multi-instance error function?!! which is
optimized by the BP-MIP algorithm. This implies that
multi-instance learner can be obtained by shifting the
focus of the standard feedforward neural network algo-
rithm.

In this section we have shown that supervised learn-
ers can be adapted to multi-instance learning according
to the general rule, i.e., shifting the focuses of super-
vised learners from the discrimination on the instances
to the discrimination on the bags. This general rule pro-
vides an insight into the working mechanism of many
multi-instance learners, and illuminates the design of
new multi-instance learning algorithms. Actually, so far
as we identify some important components of a given su-
pervised learner, we can derive a multi-instance learner
by picking one of these components to modify according
to the general rule. Note that this implies that from a
supervised learner we may derive several multi-instance
learners, which has been implicitly shown in Subsection
3.3 where different multi-instance decision trees were de-
rived from the standard decision tree algorithm. More-
over, the general rule establishes a bridge connecting
multi-instance learning with supervised learning, which
suggests that some mechanisms useful in supervised
learning may also be useful in multi-instance learning.
This will be explored in the next section.

4 Multi-Instance Ensemble

Ensemble learning paradigms train multiple versions
of a base learner to solve a problem. Since ensembles
are usually more accurate than single learners, one of

J. Comput. Sci. & Technol., Sept. 2006, Vol.21, No.5

the most active areas of research in supervised learning
has been ensemble learningl®l.

Since it has been shown in Section 3 that multi-
instance learning has close connection with supervised
learning, a consequent exciting idea is to see whether
ensemble learning paradigms can be used to enhance
multi-instance learners, as it is well-known that they can
be used to enhance supervised learners.
ensembles of multi-instance learners as multi-instance

Here we call

ensembles.

4.1 Method

A lot of ensemble learning algorithms have
been developed, such as ApaBoosT!*!| Bagaing!#?l,
GASEN[3] | etc. In this subsection, we use a relatively
simple algorithm, i.e., BAGGING, to build multi-instance
ensembles.

BAGGING employs bootstrap sampling**! to generate
multiple training sets from the original training set and
then trains component learners, i.e., different versions
of the base learner, from each generated training set.
The predictions of the component learners are combined
via magority voting, where the class label receiving the
biggest number of votes is regarded as the final predic-
tion.

In this paper we try to build multi-instance ensem-
bles of seven different base learners, including DIVERSE
DENSsITY, CITATION-KNN, RIPPER-MI, BP-MIP, RELIC,
ITERATED-DISCRIM APR and EM-DD. It is obvious
that these base learners span a wide spectrum including
Bayesian learner, nearest neighbor learner, rule inducer,
decision tree, neural network, etc. The first four learn-
ers have been analyzed in Section 3. RELIC is a multi-
instance decision tree, which has been briefly discussed
in Subsection 3.3. We use RELIC instead of ID3-MI
here simply because we have got its code. The reason
for choosing the other two base learners are briefly ex-
plained as follows.

ITERATED-DISCRIM APR is the best among the Apr
algorithms proposed by Dietterich et al.[?! It works quite
well although it is one of the earliest multi-instance
learning algorithms. Actually, Dietterich et all?! in-
dicated that since the APR algorithms had been opti-
mized to the Musk data, the performance of ITERATED-
DiscrRiM APR might be the upper bound of this bench-
mark test.

EM-DD[7 incorporates DIVERSE DENSITY into an
EM framework. It converts the multi-instance problem
to a single-instance setting by using EM to estimate the
instance which is responsible for the label of the bag.
Zhang and Goldman['") reported that the predictive er-
ror rates of EM-DD are 3.2% and 4.0% on Muskl and
Musk2, respectively, which is the best performance on
the Musk data before our work!2”!. Note that the perfor-
mance of EM-DD reported in [17] has already exceeded
the upper bound of this benchmark test anticipated by
Dietterich et al.?!

[44]



Zhi-Hua Zhou: Multi-Instance Learning from Supervised View

807

Table 1. Musk Data (72 molecules are shared in both data sets)

Bags Instances per Ba;
Data Set  Dim. Total Muskg Non-Musk Instances Min Maxp Avge.
Muskl 166 92 47 476 2 40 5.17
Musk2 166 102 39 6,598 1 1,044 64.69
Table 2. Predictive Error Rates (%) of Multi-Instance
Ensembles and Corresponding Single Learners
Learner Muskl Musk2
Single  Ensemble Single  Ensemble

D1VERSE DENSITY 11.1 8.2 17.5 11.0

CITATION-ANN 7.6 5.2 13.7 12.9

RIPPER-MI 12.0 9.1 23.0 22.6

BP-MIP 16.3 13.0 19.6 15.7

RELIC 16.3 15.9 12.7 11.0

ITERATED-DISCRIM APR 7.6 7.2 10.8 6.9

EM-DD 3.2 3.1 4.0 3.0

4.2 Experimental Results

The experiments are performed on the Musk data,
which is a popularly used real-world benchmark for
multi-instance learners.

The Musk data were generated in Dietterich et
al.’s research on drug activity prediction?. Here each
molecule is regarded as a bag, and its alternative low-
energy shapes are regarded as the instances in the bag.
A positive bag corresponds to a molecule qualified to
make a certain drug while a negative bag corresponds
to a molecule unqualified to make the drug. In order to
represent the shapes, a molecule was placed at a stan-
dard position and orientation, and then a set of 162 rays
emanating from the origin was constructed such that
the molecular surface was sampled approximately uni-
formly. There were also four features that represented
the position of an oxygen atom on the molecular sur-
face. Therefore each instance in the bags is represented
by 166 numerical attributes.

There are two data sets, i.e., Muskl and Musk2,
both of which are publicly available at the UCI Machine
Learning Repository*5l.  Muskl contains 47 positive
bags and 45 negative bags, and the number of instances
contained in each bag ranges from 2 to 40. Musk2 con-
tains 39 positive bags and 63 negative bags, and the
number of instances contained in each bag ranges from
1 to 1,044. Detailed information on the Musk data is
tabulated in Table 1.

Ten-fold cross validation is performed on each Musk
data set. In each fold, BAGGING is employed to build
an ensemble for each of the seven base multi-instance
learners. Each ensemble comprises five versions of the
base learner. The predictive error rates of the ensem-
bles are shown in Table 2. For comparison, the best re-
sults of the single multi-instance learners reported in the

2,10,17,19,21,23,24] @ 416 also included in Table

literatures!
2.

Table 2 shows that BAGGING can significantly im-

prove the generalization ability of all the investigated
multi-instance learners. It is impressive that even for
the strongest multi-instance learner, i.e., EM-DD, the
performance can also be enhanced by such a relatively
simple ensemble learning algorithm. In fact, the EM-
DD ensemble achieves the best performance up to date
on both the Musk data sets, i.e., predictive error rate
3.1% on Muskl and 3.0% on Musk2.

Since the process of building multi-instance ensem-
bles has not being geared to any specific data, such a
paradigm can be applied to any multi-instance prob-
lems. It is reasonable to anticipate that such a paradigm
may return more profit on difficult problems where no
single multi-instance learners works very well. More-
over, the experiments reported in this section also sug-
gest ensemble learning paradigms be investigated in
more scenarios, not to be limited in supervised learn-
ing.

5 Conclusion

When formalizing multi-instance learning, Dietterich
et al.l? raised an open problem, i.e., how to design multi-
instance modifications for popular machine learning al-
gorithms. This paper presents a general rule, i.e., super-
vised learners can be adapted to multi-instance learning
by shifting their focuses from the discrimination on the
instances to the discrimination on the bags, which gives
an answer to the open problem. Indeed, so far as we
identify some important components of a given super-
vised learner, we can derive a multi-instance learner by
modifying one of these components of the supervised
learner according to the general rule.

The general rule also establishes a bridge connect-
ing multi-instance learning with supervised learning,
which suggests that some mechanisms useful in super-
vised learning may also be useful in multi-instance learn-
ing. Based on this recognition, this paper tries to build

@Here the performance of EM-DD reported in the paper which proposed EM-DD[17] is included. Another result of EM-DD was

reported in [26].
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multi-instance ensembles to solve multi-instance prob-
lems. Experiments show that all the studied multi-
instance learners can be enhanced by a relatively simple
ensemble learning algorithm, and the best result up to
date on the Musk benchmark test is achieved by EM-DD
ensemble. These results not only validate the strength
of multi-instance ensembles but also suggest ensemble
learning paradigms be investigated in more scenarios,
not to be limited in supervised learning.

Note that although this paper reveals that multi-
instance learners can be derived by shifting the focuses
of supervised learners from the discrimination on the in-
stances to the discrimination on the bags, that is, adapt-
ing single-instance algorithms to the multi-instance rep-
resentation, a recent work shows that there is an op-
posite way to the solution of multi-instance problems,
that is, adapting the multi-instance representation to
the single-instance algorithms!*®!. Exploring the cons
and pros of these two opposite ways is an interesting
issue for future work.

Most current multi-instance learners can only pre-
dict the labels of the bags. In many applications it will
be more desirable if the labels of the instances in the
bags can be predicted. This has attracted some atten-
tion recently. Blockeel et al.l*"! proposed MITI, a multi-
instance decision tree algorithm, for this purpose. Zhou
et al.l*® proposed the CKNN-ROI algorithm, a variant
of CITATION-ENN, and applied it to content-based image
retrieval. It is evident that designing other algorithms
for predicting the labels of instances in multi-instance
learning is another interesting future issue.
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